
XAPP492 (v1.0) June 23, 2010 www.xilinx.com 1

© Copyright 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other
countries. All other trademarks are the property of their respective owners.

Summary Targeted Reference Designs (TRDs) provide Xilinx designers with turn-key platforms to create
FPGA based solutions in a wide variety of industries. This application note extends the
Spartan-6 FPGA PCIe-DMA-DDR3-GbE TRD to support Aurora 8B/10B serial protocol.[Ref 1]

The PCIe-DMA base platform moves data between system memory and the FPGA. The data
thus transferred, can be consumed within the FPGA, or forwarded to another FPGA, or sent
over the backplane using a serial connectivity protocol such as the Aurora 8B/10B serial
protocol. Similarly, data can be brought in to the FPGA from another FPGA or backplane
through the Aurora protocol and sent to system memory for further processing or analysis. This
enhancement retains the Ethernet operation as is and demonstrates PCIe-to-Ethernet and
PCIe-to-Aurora bridging functionality.

Connectivity
TRD

The Spartan-6 FPGA Connectivity TRD, shown in Figure 1, demonstrates the key integrated
components in a Spartan-6 FPGA: the Endpoint block for PCI Express, the GTP transceivers,
and the memory controller working together in an application along with additional IP cores
including the third-party (Northwest Logic) Scatter Gather Direct Memory Access (DMA)
engine, Xilinx Platform Studio LocalLink Tri-mode Ethernet MAC (XPS-LL-TEMAC), and the
Xilinx Memory Interface Generator (MIG).

This TRD is a x1 Endpoint block for PCI Express (v1.1 compliant) showcasing the following
independent applications:

• Network interface card (referred to as the network path) providing either:

• GMII mode using external Ethernet PHY—typically used to connect to copper
networks.

• 1000BASE-X mode using FPGA GTP transceivers—typically used to connect to
optical fiber Ethernet networks

The network path allows connection to an external network and running networking
applications such as browsing web pages, Telnet, and FTP.

• External memory interface over PCI Express (referred to as the memory path)

The memory path showcases data movement between system memory and DDR3
SDRAM through the Spartan-6 FPGA.

The TRD uses a bus-mastering scatter-gather Direct Memory Access (DMA) engine to off-load
processor data-transfer overhead. The DMA works in conjunction with the PCI Express
Endpoint and enables data movement between system memory and the FPGA at high speed.

For details on the Spartan-6 FPGA PCIe-DMA-DDR3-GbE TRD, refer to UG392, Spartan-6
FPGA Connectivity Targeted Reference Design User Guide.[Ref 1]

Application Note: Spartan-6 Family

XAPP492 (v1.0) June 23, 2010

Extending the Spartan-6 FPGA Connectivity
TRD (PCIe-DMA-DDR3-GbE) to Support the
Aurora 8B/10B Serial Protocol
Authors: Vasu Devunuri and Sunita Jain

http://www.xilinx.com

Introduction

XAPP492 (v1.0) June 23, 2010 www.xilinx.com 2

The entire TRD framework is built in a layered manner. PCIe and DMA blocks form the
foundation of the entire platform. The network path and memory path are two applications
developed around this foundation.

The TRD can be used as is or by using the guidelines provided in this application note to
develop end-design versions using other serial protocols, video, or LVDS.

Introduction This application note builds on the Spartan-6 FPGA PCIe-DMA-DDR3-GbE TRD by extending
it to connect to the Xilinx proprietary Aurora 8B/10B serial protocol. Aurora is a scalable,
lightweight, link-layer protocol that is used to move data across point-to-point serial links. It
provides a transparent interface to the physical serial links and supports both framing and
streaming modes of operation. This application note uses Aurora in framing mode.

The network path functioning as the network interface card remains the same. The memory
path is modified to support packet FIFO over the Spartan-6 FPGA memory controller and
integrating the Aurora 8B/10B LogiCORE IP, which operates through the packet FIFO.

This application note also provides directions on making modifications and incorporating
Aurora 8B/10B IP in the Spartan-6 FPGA Connectivity TRD to arrive at the design shown in the
block diagram in Figure 2.

X-Ref Target - Figure 1

Figure 1: Spartan-6 FPGA Connectivity TRD

Packet
DMA

(32-bit)

C
2S

S
2C

C
2S

S
2C

Target
Interface

x1
 L

in
k

fo
r

 P
C

I E
xp

re
ss

Third Party IP FPGA Logic

32
-b

it
Tr

an
sa

ct
io

n
In

te
rf

ac
e

@
 6

2.
5

M
H

z

DMA
Register
Interface

Virtual
FIFO
Layer

DMA
Driver
(Linux)

Blockdata
Driver
(Linux)

Ethernet
Driver
(Linux)

GUI

MIG User
Interface

@62.5 MHz

User Space Registers

Control
Plane
Bridge

DMA to
TEMAC
Bridge

TEMAC to
DMA

Bridge

PLBv46
@62.5 MHz

1000BASE-X

GMII
@125 MHz

16-bit
DDR3

@667 Mb/s

32-bit
LocalLink

@62.5 MHz

32-bit
Streaming
Interface
@62.5 MHz

32-bit
Streaming
Interface

@62.5 MHz

User
Data

User
Status

G
T

P
 T

ra
ns

ce
iv

er
s

x1
 E

nd
po

in
t B

lo
ck

 fo
r

 P
C

I E
xp

re
ss

 v
1.

1

W
ra

pp
er

 fo
r

P
C

I E
xp

re
ss

Xilinx IPIntegrated Blocks On SP605

Memory
Controller

Block

M
IG

 W
ra

pp
er

S
D

R
A

M

PLBv46
Master

XPS-LL
TEMAC

PLBv46
Slave

G
T

PPCS
PMA S

F
P

Marvell
PHY

TCP
Stack

R
J4

5

x492_01_061410

HardwareSoftware

http://www.xilinx.com

Introduction

XAPP492 (v1.0) June 23, 2010 www.xilinx.com 3

Reference Design Features

The main feature changes in this reference design from the Spartan-6 FPGA Connectivity TRD
are:

• Conversion of the DDR3 SDRAM to a LocalLink-based Packet FIFO

• The design utilizes two fully bidirectional, 32-bit wide memory controller block (MCB)
ports for data movement from:

- DMA from PC system to Aurora Transmit (egress path)

- Aurora receive to PC system through DMA (ingress path)

• An extensible Packet FIFO design that uses four fully bidirectional Spartan-6 FPGA MCB
ports

• Integration of Aurora 8B/10B LogiCORE IP

Note: The 1000BASE-X mode of operation is not supported in this design.

X-Ref Target - Figure 2

Figure 2: Spartan-6 FPGA Connectivity TRD Extension with Packet FIFO and Aurora IP

Packet
DMA

(32-bit)

C
2S

S
2C

C
2S

S
2C

Target
Interface

 x
1

Li
nk

 fo
r

P
C

I E
xp

re
ss

Third Party IP FPGA Logic

32
-b

it
Tr

an
sa

ct
io

n
In

te
rf

ac
e

@
 6

2.
5

M
H

z

DMA
Register
Interface

DMA
Driver
(Linux)

Packet
Data
Driver
(Linux)

Ethernet
Driver
(Linux)

GUI

User Space Registers

Control
Plane
Bridge

Packet FIFO

DMA to
TEMAC
Bridge

TEMAC to
DMA

Bridge

GMII
@125 MHz

PLBv46
@ 62.5 MHz

32-bit
LocalLink
@ 78.25 MHz

16-bit DDR3 @ 667 Mb/s

3.
12

5G
b/

s

32-bit
LocalLink

@62.5 MHz

32-bit
Streaming
Interface
@62.5 MHz

32-bit
Streaming
Interface
@62.5 MHz

User
Data

User
Status

G
T

P
 T

ra
ns

ce
iv

er

x1
 E

nd
po

in
t B

lo
ck

 fo
r

P
C

I E
xp

re
ss

 v
1.

1

W
ra

pp
er

 fo
r

P
C

I E
xp

re
ss

Xilinx IPIntegrated Blocks On SP605

SDRAM

G
T

P
 T

ra
ns

ce
iv

er

A
ur

or
a

8B
/1

0B

PLBv46
Master

XPS-LL
TEMAC

PLBv46
Slave

Marvell
PHY

TCP
Stack

R
J4

5

WR

RD

RD

MIG IP Core

MCB
Port 0

Port 1 WR

x492_02_061410

HardwareSoftware

http://www.xilinx.com

Hardware

XAPP492 (v1.0) June 23, 2010 www.xilinx.com 4

Requirements
• Spartan-6 FPGA Connectivity Kit

• SP605 board with a Spartan-6 device (XC6SLX45T-3FGG484C)

• Fedora 10 Linux OS LiveCD

• ISE® Design Suite 12.1 (Embedded or System Edition)

• Modelsim 6.5c or later

• PCI Express capable computer (PC)

• FMC Card (HW-FMC-XM104-G, if available)

• SMA cables

Note: The FMC card is not shipped as part of the Spartan-6 FPGA Connectivity Kit.

Hardware This section lists the hardware design details for building a packet FIFO over the virtual FIFO
provided in the Spartan-6 FPGA Connectivity TRD and additional flow control logic for the
Aurora 8B/10B IP.

Multi-port Packet FIFO

The Spartan-6 FPGA Connectivity TRD provides a virtual FIFO which supports one memory
controller port (fully bidirectional, 32-bit interface). The virtual FIFO is used in streaming mode
i.e., it has no knowledge of packet context or packet boundary delimiters; it only understands
blocks of data.

As suggested in the Spartan-6 FPGA Connectivity TRD User Guide [Ref 1], Chapter 5, multiple
instances of the streaming FIFO can be used along with multiple memory controller ports to
build a multi-port streaming FIFO.

This application note adds the functionality to make the streaming FIFO function as a packet
FIFO. The block diagram of the packet FIFO design is shown in Figure 3.

X-Ref Target - Figure 3

Figure 3: Packet FIFO Block Diagram

Packet Segmentation
and Control Generation

Write Port
Control

Control Signals
(Start, End Address)

ASYNC

ASYNC Read Port
Control

Command Port
Control

Packetizer

Virtual FIFO

MIG MCB

Streaming FIFO

16-bits @
667 Mb/s

Packet FIFO

P
ac

ke
te

d
Fr

am
in

g
In

te
rf

ac
e

F
IF

O
 In

te
rf

ac
e

Packet Reassembly

x492_03_061510

DDR3

http://www.xilinx.com

Hardware

XAPP492 (v1.0) June 23, 2010 www.xilinx.com 5

A packetizer module is designed to embed packet context information into the data stream and
interface to existing streaming FIFO. A packet FIFO is created using a packetizer, a virtual
FIFO, and the MIG generated memory controller wrapper.

Figure 2 shows a single packet FIFO block interfacing to one MCB port. For multiple MCB ports
(controlled by the NUM_PORTS parameter), multiple instances of the packet FIFO block
(connected to independent MCB ports) are generated. Asynchronous FIFOs are used to
manage clock domain crossing between the user design and virtual FIFO logic.

Packetizer

Based on a simple store and forward scheme, the packetizer block embeds the packet context
information into the streaming data. The packetizer inserts a control word containing packet
context information periodically in the data stream. The periodicity of control word insertion is
defined by the BLOCK_SIZE parameter or end of packet, whichever occurs first.

To understand the packetization scheme, consider the following example which uses the Xilinx
LocalLink as user interface.

Since DDR3 memory can not store the framing sidebands (SOP, EOP, REM, etc.) separately,
the packetizer segments the frame and introduces control words at block boundaries (as
programmed by the BLOCK_SIZE parameter). The control word provides information on length
and various LocalLink sidebands.

The control word format is described in Table 1.

Inserting a control word consumes one location in DDR3 SDRAM as overhead; hence, the
packet FIFO mode of operation provides slightly lesser throughput than using the streaming
FIFO mode of operation.

Packet FIFO Parameters

The Table 2 defines the design parameters available for packet FIFO and the default values.

Note: The design with packet FIFO wrapper for all four MCB ports and Ethernet together does not fit on
a Spartan-6 LX45T device; however, this is a feasible design in a larger Spartan-6 device.

Table 1: Control Word Format

Bit Location Field Description

0 SOP Status Start of packet status

1 EOP Status End of packet status

3:2 Remainder Status
(REM)

Remainder value stored in the control word (uses a REM
width of two bits)

15:3 Reserved Unused, currently contain zeros

31:16 Length Length in double word (DW) of data payload following control
word (1 DW = 4 bytes)

Table 2: Design Parameters

Parameter Default Value Description

NUM_PORTS 2
Defines the number of memory controller ports. The maximum
value supported is four since the memory controller supports
four fully bidirectional ports.

BLOCK_SIZE 64
Data block size (in double words) for the packetizer block that
decides the packet segmentation boundaries. Allowed values
are 64, 128, and 256.

http://www.xilinx.com

Hardware

XAPP492 (v1.0) June 23, 2010 www.xilinx.com 6

By default, the MIG core is generated with four fully bidirectional 32-bit data width ports using
a round-robin arbitration scheme. When required, the arbitration scheme can be customized
during MIG IP core generation.

Packet segmentation and control word insertion boundaries are controlled by the BLOCK_SIZE
parameter. If packets are greater than BLOCK_SIZE, packets are segmented into blocks equal
to BLOCK_SIZE–1 and a control word is inserted at the start of the data block. On reads, the
control words are stripped from the stream of data and corresponding packet framing signals
are built and passed over to the user interface (LocalLink in the current example). When a
larger BLOCK_SIZE is used, reading one control word provides more data payload, while
increasing the storage requirement for segmentation while writing. The current design provides
a 512 locations deep segmentation buffer. To increase BLOCK_SIZE beyond allowed values,
this segmentation buffer depth must be increased however, it also increases overall block RAM
utilization.

To understand the segmentation scheme, consider an example of a 510-byte packet size with
BLOCK_SIZE = 64. Figure 4 shows the way this packet is stored in DDR3 SDRAM (CW refers
to control word). For a BLOCK_SIZE of 64, a 510-byte packet is split in three blocks. The first
two blocks carry one DW of control information followed by 63 DW of data. The last block
carries one DW of control information and two DW of data.

Note: The 2 DW data packet is 8 bytes stored where a total of 6 bytes are valid. Only 2 bytes are valid
of the last 4 bytes, as indicated by REM.

Only the module interfacing to the framing user interface in the packetizer is aware of the
interface details (LocalLink in the current scenario). When there is control word misalignment,
the packetizer error bit in the Packet Error Register (0x9300), page 16 is set and can be polled
by software. No misalignment is expected unless there is data corruption or misalignment in
external memory. The reference design provided with the application note currently has no way
to recover from a control word misalignment scenario, apart from requiring a system reset.
Designers can add an application specific scheme for verifying the packet FIFO data integrity.

X-Ref Target - Figure 4

Figure 4: Packet Storage in DDR3

CW: LEN = 63, SOP

CW: LEN = 63, SOP

CW: LEN = 2, EOP, REM = 2

63 DW Data (252 bytes)

63 DW Data (252 bytes)

2 DW Data (see note in text)

CW: LEN = 63 Storage of
510 Byte
Packet in DDR3

DDR3 Start Address

x492_04_061710

http://www.xilinx.com

Hardware

XAPP492 (v1.0) June 23, 2010 www.xilinx.com 7

Aurora Protocol Considerations

The Aurora protocol is a scalable, lightweight, link-layer protocol that is used to move data
across point-to-point serial links.

The reference design uses a 1-lane framing, 4-byte user interface width, Aurora 8B/10B link
running at 3.125 Gb/s and using one transceiver accessible through the FPGA Mezzanine
Card (FMC). The 125 MHz differential clock available on SP605 board is used as a reference
clock for the transceivers.

However, in absence of an FMC connection, the design can be tested by enabling the near-end
PMA loopback mode in the transceivers.

Native Flow Control

Since the Aurora 8B/10B IP does not provide destination ready control in the receive direction,
the native flow control (NFC) interface is used which avoids packet loss by FIFO overflow. NFC
in Aurora regulates the data transmission rate at the receiving end of a full-duplex channel. By
specifying the number of idle dead beats that must be placed into the data stream, NFC allows
the receivers to control the rate of the data sent to them. The data flow can also be turned off
completely by requesting that the transmitter temporarily send only idles.[Ref 4]

The Aurora 8B/10B IP configuration used in this design operates at a user clock of 78.125 MHz.
As per the Aurora protocol specification, the round trip delay through the Aurora interfaces
between the NFC request and the first pause arriving at the originating channel partner must
not exceed 256 symbol times.

For example:

With a 3.125Gb/s rate, 1 symbol = 10 × 640 ps = 6.4 ns.

Using 256 symbol times: 256 × 6.4 = 1638.4 ns.

Using a 78.125 MHz clock (12.8 ns period), the worst case delay is 128 clock cycles.

This means that the NFC should be asserted when only 128 locations are available in the
receive FIFO.

A 512 locations deep-flow control FIFO is used on the receive interface of the Aurora 8B/10B IP
to control the NFC as shown in Figure 5.

Avoiding packet loss is accomplished by considering a low-tide and a high-tide mark for the flow
control FIFO as almost full and almost empty FIFO states, respectively. When the write space

X-Ref Target - Figure 5

Figure 5: Flow Control FIFO and NFC

Flow Control FIFO

Low-tide Mark

x492_05_052410

High-tide Mark

Flow Control FIFO

FIFO Almost FULL, Send XOFF

FIFO Almost EMPTY, Send XON

http://www.xilinx.com

Software

XAPP492 (v1.0) June 23, 2010 www.xilinx.com 8

available status of the FIFO reaches the low-tide mark, an XOFF NFC request is sent to the
channel partner, which stops any further data transmission from the remote link partner. Once
the write space available status of the FIFO reaches the high-tide mark, an XON NFC request
is sent, which enables data transmission from the remote partner. Packet loss is avoided by an
effective flow-control mechanism. The high-tide and low-tide threshold values are provided as
control registers. These values can be programmed through the software driver.

Software The software driver delivered with the Spartan-6 FPGA Connectivity targeted reference design
requires minor changes on the memory path to include registers defined for the Aurora status
and control logic as defined in Aurora Status and Control Registers.

The driver is modified to check for Aurora status before initiating traffic on the Aurora path. In
the case where there is no channel up or lane up from the Aurora link, traffic is not initiated from
software and the GUI displays a warning message.

The GUI (Figure 6) is modified to include an option to enable near-end PMA loopback mode on
the transceiver for Aurora operation in the absence of an FMC. This control from the GUI, when
selected, programs the transceivers used by the Aurora 8B/10B IP to operate in near-end PMA
loopback mode by changing the value of the LOOPBACK input signal.

The procedure to load/unload the software driver and test the design in hardware remains the
same as explained in UG392 [Ref 1] or UG665 [Ref 2]. To include the Aurora 8B/10B specific
changes in software, a macro named AURORA is defined.

X-Ref Target - Figure 6

Figure 6: GUI

x492_06_061410

Loopback Control for Aurora

Loopback Status for Aurora

http://www.xilinx.com

Summary of Steps to Follow

XAPP492 (v1.0) June 23, 2010 www.xilinx.com 9

Summary of
Steps to Follow

This section provides a summary of the steps to reuse the existing Spartan-6 FPGA
Connectivity TRD and extend it to support the Aurora protocol. Though the final reference
design is provided as part of this application note, these steps are intended to provide a quick
summary on the procedures followed as guidance for modifying the existing TRD.

From a software driver modification perspective, the incorporation of the Aurora 8B/10B IP on
the memory path is straightforward since the block data driver can be modified to incorporate
additional registers.

Note: The Core Generator™ files required to regenerate the IP cores, the design source code,
simulation test-bench and implementation scripts are provided with the reference design.

IP Generation
• Generate the Aurora 8B/10B IP with the following specifications:

- 1 lane, 4-byte framing interface

- 3.125 Gb/s line rate using a 125 MHz reference clock with immediate NFC and
using the X1Y0 transceiver in Tile 1.

• Generate the Spartan-6 FPGA memory controller using the MIG tool with the following
specifications:

- Four fully bidirectional ports supporting DDR3 SDRAM with round-robin
arbitration scheme.

The Aurora 8B/10B IP is provided with the Reference Design file and the MIG IP is generated
when running the scripts provided. A golden set of XCO files to regenerate the IP cores are also
provided under the design/reference/xco_files folder.

Design
• Design a packetizer block over the virtual FIFO as detailed in Multi-port Packet FIFO.

• Design the native flow control logic for Aurora 8B/10B IP as explained in Native Flow
Control.

• Add additional control registers as required. A brief description of registers is provided in
Appendix A: Register Description.

Integration
• Integrate the packet FIFO and Aurora 8B/10B IP at the top-level design.

• Modify the top level of the test bench to include newer ports and add an Aurora serial
interface loopback

• Modify simulation scripts to include newer sources and simulate

Software Driver Modification
• Modify the block data driver (driver/xblockdata/user.c) to include control register

programming for the Aurora path and a checkpoint to check for Aurora link status before
traffic initiation.

• Modify the GUI to include a transceiver loopback option for the Aurora path.

Design Implementation

Update the implementation script and UCF by including newer sources and constraints. The
script to support the Project Navigator flow is provided with the design. The golden reference
design bit and mcs files are also provided in the design/reference/configuration
folder.

http://www.xilinx.com

Summary of Steps to Follow

XAPP492 (v1.0) June 23, 2010 www.xilinx.com 10

Hardware Testing

The procedure to test the design in hardware remains the same as explained in UG392 [Ref 1]
(Chapter 2) or UG665 [Ref 2].

Simulation, Implementation, and Project Navigator Flow

The readme.txt file contains details on the use of simulation and implementation scripts.

The Project Navigator GUI is shown in Figure 7. s6_pcie_dma_ddr3_gbe_pfifo is the top-level
module.

X-Ref Target - Figure 7

Figure 7: Project Navigator GUI

x492_07_061410

http://www.xilinx.com

Observations

XAPP492 (v1.0) June 23, 2010 www.xilinx.com 11

Observations Key observations on performance and resource utilization of the design are summarized in this
section.

Performance
• As expected, throughput scales with packet size; as packet size increases, throughput

increases.

• As shown in Figure 8, a slight variation in throughput is also observed with BLOCK_SIZE.
A higher value of BLOCK_SIZE implies less frequent control word overhead, which implies
availability of more data payload per control word read. A larger BLOCK_SIZE is slightly
better when large sized packets are transported.

The performance shown in Figure 8 is obtained with the native flow control FIFO thresholds for
the Aurora 8B/10B IP derived for the worst-case condition as defined by the Aurora
specification. Factors impacting throughput are:

• Store and forward scheme for Packet FIFO

• MCB port arbitration

• Throttling of traffic due to the Aurora NFC

Throughput can be improved by using an Aurora peer and better characterized NFC threshold
levels depending upon the round-trip time between Aurora peers.

Device Resource Utilization

Table 3 provides resource utilization estimate for the design shown in Figure 2. The resource
utilization numbers are obtained using the default options for various parameters provided in
the top-level design and the implementation options provided in the scripts. Any change of
options would result in a change in utilization. The transceiver utilization is reported for the
GTPA1_DUAL; one transceiver in a pair is utilized in the design (not both).

X-Ref Target - Figure 8

Figure 8: Throughput Variation Summary

Block Size = 64
Block Size = 128
Block Size = 256

x492_08_061410
Packet Size in Bytes

T
hr

ou
gh

pu
t i

n
G

b/
s

0
.5

9
3

0
.8

3
5

1
.3

3

1
.3

9

1
.3

9
8

0
.5

9
4

0
.8

3
5

1
.3

3
1

1
.3

9
7

1
.4

0
6

0
.5

9
4

0
.8

3
5

1
.3

3
1

1
.4

1
1

1
.4

2
3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

256 512 1024 2048 4096

http://www.xilinx.com

Reference Design

XAPP492 (v1.0) June 23, 2010 www.xilinx.com 12

Reference
Design

The reference design files can be downloaded at:

https://secure.xilinx.com/webreg/clickthrough.do?cid=147907

The reference design checklist is shown in Table 4.

Table 3: Resource Utilization

Resource Utilization Total Available Percentage Utilization

Slice Registers 24,593 54,576 45

Slice LUTs 23,213 27,288 85

IOBs 84 296 28

RAMB16BWERs 42 116 36

DCMs 1 8 12

PLL_ADVs 3 4 75

BUFGs 12 16 75

GTPA1_DUALs 2 2 100

Table 4: Reference Design Checklist

Parameter Description

Developer Name Xilinx Inc.

Target Devices (stepping level, ES, production,
speed grades)

Spartan-6 LXT devices

Source Code Provided Yes

Source Code Format Verilog

Design Uses Code/IP from an Existing
Reference Design/Application Note, Third Party,
or CORE Generator™ software

Yes:
• Code from the Spartan-6 FPGA

Connectivity TRD
• Core Generator IP for Aurora 8B/10B

Simulation

Functional Simulation Performed Yes

Timing Simulation Performed No

Testbench Used for Functional Simulations
Provided

Yes

Testbench Format Verilog

Simulator Software Used ModelSim 6.5c

SPICE/IBIS Simulations No

Implementation

Synthesis Software Tools Used XST (ISE design suite: 12.1 Embedded or
System Edition)

Implementation Software Tools Used ISE design suite: 12.1 Embedded or System
Edition

Static Timing Analysis Performed Yes

https://secure.xilinx.com/webreg/clickthrough.do?cid=147907
http://www.xilinx.com

Conclusion

XAPP492 (v1.0) June 23, 2010 www.xilinx.com 13

Conclusion This application note demonstrates the Spartan-6 FPGA Connectivity TRD in a platform
solution. The example design provided uses an existing infrastructure (the TRD) as a base to
create a newer design with limited effort.

References 1. UG392, Spartan-6 FPGA Connectivity Targeted Reference Design User Guide

2. UG665, Spartan-6 FPGA Connectivity Kit Getting Started Guide

3. UG388, Spartan-6 FPGA Memory Controller User Guide

4. UG353, LogiCORE™ IP Aurora 8B/10B User Guide

5. DS637, LogiCORE IP Aurora 8B/10B Data Sheet

6. SP002, Aurora 8B/10B Protocol Specification

Hardware Verification

Hardware Verified Yes

Hardware Used for Verification SP605 development board

Table 4: Reference Design Checklist (Cont’d)

Parameter Description

http://www.xilinx.com
http://www.xilinx.com/support/documentation/boards_and_kits/ug392.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug665.pdf
http://www.xilinx.com/support/documentation/user_guides/ug388.pdf
http://www.xilinx.com/support/documentation/ip_documentation/aurora_8b10b_ug353.pdf
http://www.xilinx.com/support/documentation/ip_documentation/aurora_8b10b_ds637.pdf
http://www.xilinx.com/support/documentation/ip_documentation/aurora_8b10b_protocol_spec_sp002.pdf

Appendix A

XAPP492 (v1.0) June 23, 2010 www.xilinx.com 14

Appendix A Register Description

This section defines the additional registers included for multi-port virtual FIFO and Aurora IP
control and status.

The register bits not defined explicitly return a value of zero on read and are assumed to be
reserved for all purposes.

Multi-port Virtual FIFO Status and Control Registers

The multi-port virtual FIFO status and control registers define the registers specific to virtual
FIFOs. As multiple ports of the memory controller are used, individual registers are defined for
each port.

Status Register (0x9100)

The status register indicates the status of DDR3 calibration to the software driver. It enables
software to determine if hardware is ready for operation.

Write Threshold Register (0x9104)

The write threshold register programs the write threshold value to issue the write commands to
the memory controller only when the write FIFO has space equal to or greater than the write
threshold value. This register is applicable to all ports.

Table 5: User Application Register Range

User Logic Register Group Range (Offset from BAR0)

Multi-port Virtual FIFO Status and Control Registers 0x9100–0x91FF

Aurora Status and Control Registers 0x9200–0x92FF

Packetizer Registers 0x9300–0x93FF

Table 6: Status Register

Bit
Location Field Mode Default Value Description

0 Calibration
Status

RO 1'b0 Calibration Done. This bit indicates
calibration done status from memory
controller.

Table 7: Write Threshold Register

Bit
Location Field Mode Default Value Description

7:0 Write Threshold RW 8'h38 Write threshold for issuing write
command to DDR3.

http://www.xilinx.com

Appendix A

XAPP492 (v1.0) June 23, 2010 www.xilinx.com 15

For multiple memory controller ports, the address ranges are defined in Table 8.

Though the TRD only supports two memory controller ports, additional registers and logic are
provided to support future design scalability with increased memory controller ports.

Packet Length Register (0x9110, 0x9140, 0x9180, 0x91C0)

The packet length register indicates the size of the packet (in bytes) to build in the receive
direction. The default value is 1 KB.

Start Address Register (0x9114, 0x9144, 0x9184, 0x91C4)

The start address register indicates the start address for DDR3 partitioning. The default value
is zero on reset for Port 0 register. For each port, a 1MB FIFO depth is provided and the start
and end addresses are programmed accordingly. Software programming of this register is
optional.

End Address Register (0x9118, 0x9148, 0x9188, 0x91C8)

The end address register indicates the end address for DDR3 partitioning. The default value is
32'h0010_0000 on reset indicating 1MB FIFO depth for Port 0. Software programming of this
register is optional.

Error Statistics Register (0x911C, 0x914C, 0x918C, 0x91CC)

The DDR3 error statistics register records the status of various error bits from the memory
controller. This register is cleared on reset.

Table 8: Memory Port Registers

Memory Controller Port Range (Offset from BAR0)

Port 0 0x9110–0x913F

Port 1 0x9140–0x917F

Port 2 0x9180–0x91BF

Port 3 0x91C0–0x91FF

Table 9: Receive Packet Length Register

Bit
Location Field Mode Default Value Description

12:0 Packet Length RW 12'h0400 DDR3 receive packet length. Indicates
the size of the packet (in bytes) to build
in the receive direction.

Table 10: Error Statistics Register

Bit
Location Field Mode Default Value Description

0 Write Underrun RW 0 Memory controller port write underrun
status.

1 Read Overflow RW 0 Memory controller port read overflow
status

http://www.xilinx.com

Appendix A

XAPP492 (v1.0) June 23, 2010 www.xilinx.com 16

Aurora Status and Control Registers

The Aurora status and control registers group defines the specific Aurora IP status and control
registers.

Aurora Control and Status (0x9200)

The software driver is currently programmed to support near end PMA loopback. The driver
can be changed to near-end PCS loopback if required in the driver/xblockdata/user.c
file.

Aurora Low-tide Register (0x9204)

The Aurora low-tide register defines the lower bound for space available in the FIFO. Native
flow control interface is driven based on the low-tide and high-tide values.

Aurora High-tide Register (0x9208)

The Aurora high-tide register defines the upper bound for space available in the FIFO. Native
flow control interface is driven based on the low-tide and high-tide values.

Packetizer Registers

Packet Error Register (0x9300)

The packet error register provides packetization error status on each packet FIFO port. A
packet error results due to the misalignment of the control word in the reassembly of packets.
Design reset is required on a packet error.

Table 11: Aurora Control and Status Register

Bit
Location Field Mode Default Value Description

0 Lane Up RO 0 Indicates Aurora lane up status.

1 Channel Up RO 0 Indicates Aurora channel up status.

31:29 Loopback RW 0 Control GT loopback:
• 3'b000 - No loopback
• 3'b001 - Near end PCS loopback
• 3'b010 - Near end PMA loopback

Table 12: Aurora Low-tide Register

Bit
Location Field Mode Default Value Description

8:0 Low-tide mark RW 9’d128 Low-tide mark for FIFO space
availability.

Table 13: Aurora High-tide Register

Bit
Location Field Mode Default Value Description

8:0 High-tide mark RW 9’d384 High-tide mark for FIFO space
availability.

Table 14: Packet Error Register

Bit
Location Field Mode Default Value Description

1:0 Packet Error RW 2’b0 Indicates packetization error for
memory controller ports 0 and 1.

http://www.xilinx.com

Revision History

XAPP492 (v1.0) June 23, 2010 www.xilinx.com 17

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note
is one possible implementation of this feature, application, or standard, and is subject to change without
further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with
your use or implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF
DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

CRITICAL APPLICATIONS DISCLAIMER
XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT
DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING
FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS,
CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE
DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH,
PERSONAL INJURY OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND
COLLECTIVELY, “CRITICAL APPLICATIONS”). FURTHERMORE, XILINX PRODUCTS ARE NOT
DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A
VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH
DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE
REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR. CUSTOMER
AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX
PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM
EXTENT PERMITTED BY APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND
LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL APPLICATIONS.

AUTOMOTIVE APPLICATIONS DISCLAIMER
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY
APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I)
THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE
OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX
DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE
OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER
ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH
APPLICATIONS.

Date Version Description of Revisions

06/23/10 1.0 Initial Xilinx release.

http://www.xilinx.com

	Extending the Spartan-6 FPGA Connectivity TRD (PCIe-DMA-DDR3-GbE) to Support the Aurora 8B/10B Serial Protocol
	Summary
	Connectivity TRD
	Introduction
	Reference Design Features
	Requirements

	Hardware
	Multi-port Packet FIFO
	Aurora Protocol Considerations

	Software
	Summary of Steps to Follow
	IP Generation
	Design
	Integration
	Software Driver Modification
	Design Implementation
	Hardware Testing
	Simulation, Implementation, and Project Navigator Flow

	Observations
	Performance
	Device Resource Utilization

	Reference Design
	Conclusion
	References
	Appendix A
	Register Description
	Multi-port Virtual FIFO Status and Control Registers
	Aurora Status and Control Registers
	Packetizer Registers

	Revision History
	Notice of Disclaimer

